

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNNOLOGY :: PUTTU			NOLOGY :: PUTTUR	
S.	Siddharth Nagar, Narayana	vanam Road – 517	583	
SIDDEARTHA ASSIRUTIONS PUTUR IstDollog	QUESTION BANK (DESCRIPTIVE)			
Subject With Code:	Low Power VLSI Design (20EC4210)	Course & Branch:	M.TECH-VLSI DESIGN	
Regulation:	R20	Year & Sem:	I M.Tech & II SEM	
	<u>UNIT –I</u>			
LOW P	<u>POWER DESIGN, AN OVER VIEW & M</u>	OS/Bicmos PR	<u>OCESSES</u>	
1. a) What a	are the various limitations of Low-voltage, Lo	w-power design?	[L2][CO2] [6M]	
b) Explain	n about Silicon-on-Insulator (SOI) technolog	у.	[L2][CO1] [6M]	
2. a) Explain	n low cost, medium speed digital CMOS proc	cess.	[L2][CO2] [6M]	
b) Draw t	the structure of P-well BiCMOS process and	explain the same.	[L1][CO3] [6M]	
3. a) Draw t	the structure of Twin-well BiCMOS process a	and explain the same	ne. [L1][CO3] [6M]	
b) Explain	n in detail about threshold voltage adjustment	for CMOS device	s [L3][CO1] [6M]	
	ble diagram, Explain the following,		[L1][CO2] [12M]	
ý 1	prous Drain Structure,			
<i>,</i>	Diffused Drain, Doped Drain.			
	lifferent process considerations for Bipolar tra	ansistors.	[L2][CO1] [12M]	
6. a) How the	he bipolar transistor takes important role in Is	olation in BiCMOS	S? [L1][CO3] [6M]	
b) How the	he MOS transistor takes important role in Isol	ation in BiCMOS?	[L3][CO2] [6M]	
7. a) What a	are the considerations for process integration	in BiCMOS proces	s? [L1][CO1] [6M]	
b) What a	are the considerations for typical analog/Digit	al BiCMOS proces	s? [L2][CO3] [6M]	
8. Briefly des sketch.	scribe LOCOS isolation technique in MOS tra	ansistors with neat	[L1][CO1] [12M]	
9. a) Explain	n about punch through in short – channel MC	SFETS.	[L2][CO3] [6M]	
b) Descri	be different process considerations for Bipola	r transistors.	[L1][CO1] [6M]	
-	e following with neat diagrams, / trench Isolation,		[L3][CO2] [12M]	
<i>,</i>	ench Isolation.			

R20

<u>UNIT-II</u>

LOW-VOLTAGE/LOW POWER CMOS/ BiCMOS PROCESSES & DEVICE BEHAVIOR AND MODELING

1.	a)	With the help of neat sketches explain about Poly silicon Emitter High- performance BICMOS structures and Explain about the process steps.	[L2][CO3]	[6M]
	b)	Explain the low capacitance Bipolar/BiCMOS processes with neat diagram.	[L1][CO1]	[6M]
2.	a)	Explain the SOI CMOS/BiCMOS VLSIs processes.	[L3][CO2]	[6M]
	b)	Explain in detail about copper Electroplating/Copper-Fill.	[L1][CO1]	[6M]
3.		th neat diagram explain in detail about SOI BiCMOS structures with copper tallization.	[L1][CO3]	[12M]
4.	a)	Describe the device structure and fabrication process for lateral BJT on SOI.	[L1][CO2]	[6M]
	b)	What are the electrical characteristics of lateral BJT on SOI?	[L2][CO1]	[6M]
5.		nat are the future trends and directions in CMOS/BICMOS processes?	[L2][CO3]	[12M]
6.	a) I	plain the following Advanced MOSFET models, HSPICE level 50 Model, EKV MOSFET Model.	[L3][CO1]	[12M]
7.	a)	What are the limitations of the MOSFET characteristics?	[L2][CO1]	[6M]
	b)	Explain in detail about MOSFET device fabrication in Hybrid-Mode Environment.	[L1][CO1]	[6M]
8.	a)	What are the future trends and directions in CMOS/BICMOS processes? Explain.	[L1][CO1]	[6M]
	b)	Briefly explain LEVEL4 MOSFET Spice model.	[L2][CO3]	[6M]
9.	a) I	plain the following Bipolar spice models, Ebers-Moll model, Modified Gummel-Poon Model.	[L1][CO1]	[6M]
10.	a)	Describe briefly about VBIC95 Bipolar spice model.	[L3][CO2]	[6M]
	b)	Explain the Noise model of HSPICE Level 50.	[L1][C01]	[6M]

R20

<u>UNIT III</u>

<u>CMOS AND Bi-CMOS LOGIC GATES & LOW-VOLTAGE LOW POWER</u> <u>LOGIC CIRCUITS</u>

1.	a)	Explain the following parameters in conventional CMOS logic gates, a)Power dissipation in CMOS technology,	[L1][CO1] [6M]
		b)Complementary MOS Inverter.	
	b)	Design basic NOR and NAND gate using conventional CMOS logic	[L1][CO3] [6M]
	,	gates.	
2.	a)	Describe the basic driver configuration in conventional Bi CMOS logic	[L2][CO3] [6M]
	b)	gates. Explain the following parameters in conventional Bi CMOS logic gates,	[L1][CO1] [6M]
	0)	a) Full swing with shunting device,	
		b) Full swing complementary MOS/Bipolar Logic circuit.	
3.	W	hat are all the performance evaluation and comparison of BiCMOS logic	[L1][CO2] [12M]
	-	tes?	
4.	W	ith suitable diagram, explain the merged BiCMOS digital circuits.	[L3][CO1] [12M]
5.	a)	Explain in detail about performance evaluation of merged BiCMOS	[L1][CO1] [6M]
		digital circuits.	
	b)	Discuss the experimental result of merged BiCMOS digital circuits.	[L1][CO3] [6M]
6.	Ex	plain the following parameters in ESD-free BiCMOS Digital circuits,	[L2][CO1] [12 M]
		Circuit operation.	
_		Comparative evaluation.	
7.		xplain the following Bootstrapped-type BiCMOS digital circuits,	[L2][CO3] [12M]
		1.5V logic gate, Full swing Inverter.	
8.		escribe the operation of High beta BiCMOS digital circuits and analyze its	[L1][CO1] [12M]
0.		rformance.	
9.	-	Explain BiNMOS version of Bootstrapped circuit with neat sketch	[L2][CO1] [6M]
	b)	What are the design considerations of 1.5V Bootstrapped Full swing	[L1][CO3] [6M]
	- /	BiCMOS/BiNMOS inverter?	[][] [0]
1(). a)	Explain the working of twin capacitor BiNMOS logic gate and evaluate	[L2][CO3] [6M]
		its performance.	
	b)	Explain Feedback-Type BiCMOS digital circuits.	[L1][CO1] [6M]

R20

<u>UNIT –IV</u> LOW POWER LATCHES AND FLIP FLOPS

1.	a)	Explain about the functionality and the synchronous theme in the evolution of latches and flip.	[L2][CO1]	[6M]
	b)	Explain about the optimization and the performance theme in the evolution of latches and flip.	[L1][CO3]	[6M]
2.	a)	Explain about the pipelining theme in the evolution of Latches and Flip-flop.	[L2][CO3]	[6M]
	b)	Explain about the high performance and low power theme in the evolution of latches and Flip-flop.	[L2][CO1]	[6M]
3.	a)	Discuss about the maximum operation clock frequency and setup and hold time consideration in performance measures for latches and Flip-flop.	[L3][CO2]	[6M]
	b)	Discuss about the sensitivity to clock skew and input and clock skew rate of performance measures for latches and Flip-flop.	[L1][CO2]	[6M]
4.	Int flo	erpret the measurement of power dissipation measure in latches and Flip- ps.	[L2][C01]	[12M]
5.	Ex	plain in detail about Dynamic flip-flops in single edge-triggered Flip-flops.	[L1][CO3]	[12M]
6.	Ex	plain in detail about Double edge-triggered Flip-flops.	[L2][CO3]	[12M]
7	a)	Describe static and semi static Flip-flops with neat diagrams.	[L1][CO3]	[6M]
	b)	What is meant by Synchronous theme of Flip-flops?	[L1][CO2]	[6M]
8	Ex	plain High-performance and Low power theme of CMOS.	[L1][CO1]	[12M]
9	a)N	plain the following terms: AOCF. Clock skew.	[L2][CO1]	[12M]
10.	a)	plain the following performance measures of a latch/Flip-flop Full swing Considerations. MOCF.	[L1][CO3]	[12M]

<u>UNIT V</u> SPECIAL TECHNIOUES

1.	a)	Explain in detail about clock gating in clock networks.	[L1][CO1]	[6M]
	b)	How the swing clock is used to reduce the power in clock networks?	[L1][CO3]	[6M]
2.	a)	Describe the Oscillator Circuit for Clock Generation.	[L1][CO2]	[6M]
	b)	Explain about Frequency Division and Multiplication.	[L2][CO1]	[6M]
3.	a)	Discuss Tristate Keeper Circuit in CMOS Floating Node.	[L3][CO2]	[6M]
	b)	Explain in detail about Blocking Gate in CMOS Floating Node.	[L1][CO2]	[6M]
4.	a)	Interpret Low Swing Bus with suitable diagram.	[L2][CO1]	[6M]

b) Explain the Recycling Bus in low power bus.	[L3][CO2] [6M]
5. Discuss how delay can be balanced in low power bus.	[L1][CO2] [12M]
6. a) How SRAM Cell is used for low power techniques.	[L1][CO1] [6M]
b) Explain about Pulsed Word line and Reduced Bit line Swing.	[L1][CO2] [6M]
7. Briefly describe CMOS Floating node.	[L2][CO2] [12M]
8. Explain various delay balancing techniques with a neat sketch.	[L3][CO2] [12M]
9. a) Explain different low power techniques for SRAM.	[L1][CO1] [6M]
b) What is SRAM? Draw the circuit of SRAM.	[L2][CO1] [6M]
10. a) What is meant by Clock Distribution Network?	[L3][CO2] [6M]
b) What is Resonant clocking?	[L1][CO2] [6M]

Prepared by: Raghul G